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. Page 28, last paragraph. The second sentence should be changed to read ""An application of the
flux integral reveals further that M, in Equation 94 becomes zero in this case, as is demon-
strated in Appendix C."

2. Page 29, Equation 96 should read

n=-1
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The foregoing changes have become necessary because of an incorrect derivation in Appendix C.
The following is a corrected version of the relevant derivation.

3. Page 70 et seq. The section from Equation C9 through Equation C21 should read:

Upon substituting A = 1 in Equations C8 and C9, Equation C6 reduces to
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where
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It can be shown (Reference 3) that y, obeys the relation

V1 <;T10> = B ('#o) + i NN (ﬁ%) D, A <ﬁ%> . (C10c)

By virtue of Equations C10b - C10c, Equation C10a reduces to

n
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Upon setting A = 0 in Equation C7, and remembering that ¢., = 0, Equation C10d further reduces
to

n
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The net flux crossing the top of the cloud is found, upon setting + = 0, from

~ 1
F(0) = Fy<my * (1 - “’o) [Z %, (M_a - Ma) = K '){] , (C12)
a=1

and crossing the bottom of the cloud, upon setting = = 7, , from
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If the cloud is semi-infinite, allM_, =0 (a =1, ---,n), and Equation C12 becomes
~ , Ma'
F(0) = Fo<py = (1 - 3) E )t Yol p (C14)
a=1

In the special case of conservative scattering (3, = 1), Equations C12-C14 are no longer
necessarily valid relations. In this case the azimuth-independent term of the intensity in the case
of a finitely thick cloud is given by (Equation 94)
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where M,,(a =1, ---, n - 1),M,, and M, are the 2n constants of integration. It is clear from

Equation C11 and the preceding discussion that in this case the flux integral must reduce to

F(t) = F, {.uo e-'r/ll-o + % Z a; H; Hy |:{<1 - %231) T /‘Li} My + Mr]} : (016)

Since
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Equation C16 reduces after some algebra to
F(1) = up Fy [Mo + e'T/“O] ) (C18a)

This is the net flux of the diffuse radiation field. Since the net flux of the direct field (from
the point source) is given by

Fp(r) = -u, Fy e /o (C18b)
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the net flux of the fofal radiation field is given by
F (1) = uy Fo My . (C18c)

The flux integral F (r) is seen to be independent of optical depth, as it must be for conservative
scattering.

If the cloud is semi-infinite and & = 1, then, as = - 0, Equation C18a must reduce to

0
F(0) = u, F,; (C19)

i.e., the "albedo" of the cloud must be unity. Thus M, is zero, and the expression for 1¢% (721)
in this case is seen by inspection to be
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where M, (@ =1, --+, n - 1) and M, are the n constants of integration to be determined from
the n boundary conditions

1€9(0,~u) = 0 (i = 1, ---, n) . (C21)

Continue with the section on The Law of Darkening, page T2.
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RADIATIVE TRANSFER IN A CLOUDY ATMOSPHERE

by
R. E. Samuelson
Goddard Space Flight Center

SUMMARY

The equation of radiative transfer in the context of a partially
thermally emitting, partially anisotropically scattering plane-parallel
cloudy atmosphere is derived. The derivation allows an exact inter-
pretation of the auxiliary quantities in the equation of transfer in terms
of the Mie scattering parameters. Explicit solutions are given by the
method of discrete ordinates in accordance with Chandrasekhar's pro-
cedure, and extended to include thermal emission at infrared wave-
lengths. Solutions of this type, restricted to plane-parallel layers
bounded on both sides by a vacuum and characteristic of a phase function
for single scattering independent of optical depth, are referred to as
solutions to the vestricted problem. To extend the treatment to the
generval problem, a procedure wherein layers with different scattering
properties are combined is developed in terms of the restricted solu-
tions; two explicit examples are worked out. Such quantities as the
angular distribution of outgoing radiation and the net outgoing flux are
consequences of these solutions.
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RADIATIVE TRANSFER IN A CLOUDY ATMOSPHERE

by
R. E. Samuelson
Goddard Space Flight Center

INTRODUCTION

The study of radiative transfer in a cloudy atmosphere is extremely involved due to the fact
that clouds are composed primarily of particles having physical dimensions comparable to the
wavelengths of radiation of interest. This realm of particle sizes requires a much more elaborate
treatment of the theory of single scattering (scatiering of radiation by one particle) than do the
theories for single scattering for particles of quite different sizes.

Even where the theory for scattering by single particles is well understood, it still remains
to describe the process of the transfer of radiation through a field of these particles, and, in par-
ticular, to describe the angular distribution of radiation from such a field. It is due to the order of
difficulty in describing this compound process quantitatively that many investigators in the past
have been led to treat various simplifications of the theory. An example of one such simplification
involves adding a diffuse (isotropic) component to the intensities derived from a regular single
scattering problem. Another is the two stream method used by various authors, whereby the es-
sential assumption made is that the radiation field may be divided into two streams normal to a
stratified cloud layer. Havard (Reference 1)has improved upon this method by replacing the specific
intensity with the flux density as the dependent variable. Both methods suffer from the difficulty
that nothing can be said about the angular distribution of radiation emitted from the cloud.

On the other hand, Churchill efal. (Reference 2) have obtained exact solutions for the angular dis-
tribution of outgoing diffusely reflected and transmitted radiation which are valid for three-term
single scattering phase functions, and have developed a program which will solve transfer problems
involving phase functions of much greater complexity exactly, provided among other assumptions
that the phase function is independent of optical depth. The major limiting factors are the number
of terms carried and the time involved on the electronic computer. A further limitation, which in
practice is relevant only at wavelengths of a few microns and beyond, is that no account of thermal
emission can be made.

It will be the purpose of this paper to formulate in a logical manner the appropriate equation
of radiative transfer consistent with restricted physical situations, indicate how numerical solutions
may be obtained for these situations, and finally, show how these restricted solutions lead in a
natural way to more general solutions for physically realistic model cloudy atmospheres. In order



to interpret the various single scattering parameters contained in the equation of transfer, it is
convenient to derive this equation in the context of some single scattering theory. We have chosen
to adopt the Mie theory implicitly for this purpose.

Beginning with the fundamental concept of individual photon-particle interactions, we are led
in a natural way to the exact interpretation of such physically significant quantities as the phase
function for single scattering, the albedo for single scattering, and the optical depth, all of which
are explicitly contained in the basic equation of transfer. This development further illuminates
the nature of the various approximations which are employed in order to make the scalar equation
of transfer, in the context of polydispersed plane-parallel media, amenable to solution in some
finite order of approximation.

Once the equation of transfer is formulated we proceed to the results of an analysis by
Chandrasekhar. In particular, the solutions for the angular distribution of diffusely reflected and
transmitted radiation at the surfaces of a plane-parallel cloud are given. In addition, an extension
of this analysis to include radiation thermally emitted by a cloud having an arbitrary (but known)
temperature profile is made, and analogous solutions to the more extended problem are derived.
The solutions in all cases are obtained by the method of discrete ordinates compatible with the
relevant equation of transfer. These solutions are referred to as solutions to the '"restricted"
problems; i.e., the relevant strata are assumed to be bounded on both sides by a vacuum, and are
irradiated at most by a single outside point source.

The problem is then extended to include the effects of the surrounding atmosphere and ground.
The two explicit problems considered involve the solutions for the net flux and angular distribution
of: 1) radiation which is diffusely reflected from the top of an optically thin atmosphere overlying
an optically thick cloud, and 2) radiation which is thermally emitted from the top of an atmosphere
containing an optically thin cloud. In the latter case only the cloud is assumed to contribute to the
scattering of radiation.

The formulation of the first of these more general problems consists of a linear integral
equation containing as free parameters solutions to the more restricted problems previously dis-
cussed. This integral equation is shown to reduce to a system of independent linear integral equa-
tions of the second kind containing one independent variable only. Once these equations are solved
by standard methods the remainder of the solution becomes quite straightforward.

The formulation of the second of these general problems consists only of a combination of the
solutions, and integrals of these solutions, of the relevant restricted problems previously alluded
to. By virtue of formulating the problem in the context of only one scattering layer, no integrals
containing the dependent variable appear in the formulation. The other layers (including the ground)
are assumed to contribute only purely emitted radiation.

Many extensions to the basic theory are possible. The solutions obtained here are primarily
restricted to those which are not excessively difficult to solve numerically with the aid of an
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electronic computer. Inherent in the final solutions are any defects in the formalism due to the
following nine major assumptions:

plane-parallel atmospheres,

unpolarized radiation,

spherical cloud particles,

well-separated cloud particles,

phase function for single scattering independent of optical depth,
local thermodynamic equilibrium,

. blackbody emission from the ground at long wavelengths,

finite Legendre polynomial expansion of the phase function for single scattering,

o 3 e s p PP

. finite approximation solution to the equation of transfer.

Besides these approximations, there is the additional restriction of having to approximate functions,
which vary continuously with certain physical parameters, by step functions. Examples are the
variation of the complex index of refraction with wavelength and the variation of particle distribu-
tion with particle size. It is true that these steps may be taken rather fine, but practical consider-
ations of time and efficiency are going to limit the accuracy.

In the above approximations, it is felt that only the concept of plane-parallel atmospheres and
the independence of the phase function for single scattering upon optical depth are subject to severe
criticism. A partial compensation can be made for polarization in the sense that those intensities
which are incorporated in the general solutions which result from a Rayleigh scattering atmosphere
will be considered to be those intensities which result from the correct matrix formulation of the
equation of transfer for the relevant restricted problem. The other approximations are not felt to
be particularly severe. Perhaps the concept of spherical cloud particles should be modified; cirrus
clouds are an example of one physical situation which might require this. If the cloud were divided
into more than one layer, and each layer treated separately, the approximation of requiring the
phase function for single scattering to the independent of optical depth could also be modified.
However, this would make the general problem,that of combining the separate »estricted solutions
into a general solution through the use of certain integral relations to be derived in the last section
of this paper, extremely complex, and hence will not be considered.

Five appendices are included in this paper.

Appendix A shows that the phase function for single scattering is normalized to the albedo
for single scattering when this phase function is approximated by a finite series expansion of
Legendre polynominals.

Appendix B gives the solution for a particular integral satisfying the equation of transfer which
includes effects of thermal emission,



Appendix C gives solutions for the various flux integrals which arise from solutions to the
equation of transfer.

Appendix D suggests methods of numerically solving certain integrals and integral equations.
The integrals are replaced by Gaussian sums, and each integral equation is correspondingly re-
placed by a system of n equations in n unknowns.

Appendix E contains a list of symbols used in this paper.

FUNDAMENTAL QUANTITIES

Introduction

In a gross way we may think of observables, namely the radiative specific intensity, outgoing
flux density, and so on, as being field quantities, and we will want to inquire how clouds affect the
radiation field as a whole. But in order to do this it will be necessary to investigate individual
photon-particle interactions, for these individual processes are responsible for variations of the
field.

Regardless of the physical processes involved, the study must be undertaken in some frame of
reference. The kinds of clouds which will be adopted as models will be plane-parallel, i.e., strat-
ified with no horizontal inhomogeneities. It can be anticipated that the optical path length of radia-
tion in clouds is very short compared to the radius of curvature of any planetary atmosphere, and
that vertical inhomogeneities will far outweigh those of horizontal extent. Only ''corrugated tops"
of clouds are expected to cause serious difficulty; in fact this deviation from plane-parallelism is
in practice probably the most serious defect of the models.

The Coordinate System

Since it will be necessary to consider such processes as absorption, scattering, and emission
of radiant energy on a microscopic scale, we shali aeed the concept of an element of mass dm con-
taining many particles, restricted to a volume dv, and characterized by a mean density o of matter
in the element. The position of this mass element will be specified by the vertical distance z meas-
ured positively from the ground to dm. Directions at dm will be specified by the cosine of the zenith
angle ¢, denoted by ., and the azimuthal angle ¢ (Figure 1). The zenith angle g is measured posi-
tively from zero (the zenith) to » (the nadir). The azimuthal angle ¢ is measured through 2~ radi-
ans in the plane of stratification from some arbitrary angle ¢,. Both the values of ¢, and the
direction of measurement will be specified at a later time. In general directions will be indicated
by the symbol (v, #). For example, I(z, x, ¢) is the intensity of radiation at dm (at a level z) in the
direction (u, ¢). This direction is inclined to the normal to the plane of stratification by an angle
0, and is contained in the plane defined by the normal and the azimuthal angle ¢.

B RN |



The Specific Intensity

The amount of radiant energy which is z
transmitted across an elemental surface area
do in a time dt and in a direction inclined at an
angle 6 to the normal to do will be given by $E, .
8E, is further restricted to the frequency range
(v, v+dv) and to a solid angle dw. The depend-
ent variable of principal interest is the ''mono-
chromatic"” specific intensity defined by the
limiting ratio

Y
5E,,
I, * cosfdrdwdvdt (1)
where do, dw, dv, dt -0 in any manner. Thus I, ¢’

is the rate at which radiant energy confined toa
unit solid angle and unit frequency interval

crosses a unit surface area which is normal to

the direction of radiation. Figure 1 — The relation between the scattering angle ®
and the coordinate angles ¢, ¢’, ¢, and 8’. Radiation is
assumed to be incident on the mass element dm at Oin the

The PhaseFunction for Sing|e scattering direction Oﬁl =(p, @) andjco’r’rered by dm through the
angle @ into the direction OP, = (u', &).

We shall need the concept of a phase func-
tion for single scattering, P(cos ®), which de-
scribes the angular distribution of radiation
scattered once. If AE, represents the fractional amount of energy E, incident on dm in unit time in
the direction (u, ¢), which is either absorbed or scattered in all directions in unit time, and d(AEV)
is that fraction of AE which is scattered into the direction (»’, #’) and contained in the solid angle
dw', we may formally represent this fraction of scattered radiation by

’

dew
d[AE,,(z,p,', ¢>‘)] = P(cos®)AE, (z, uy @) G )

where @ is the angle through which the radiation is scattered.*

~

If the albedo for single scattering &, is defined to be the ratio of radiation scattered in all di-

rections in unit time to the radiation extinguished (absorbed plus scattered)in unit time, we clearly
have

1 N ~ deo’
m L,d[AEv(z‘“”djl)] = Wy T L’?(cos®)4_;)7’ (3)

*The tacit assumption has been made that multiple scattering does not take place in dm. The consequences of this assumption will be
made apparent in the next section.



where the integration is performed over all solid angles. The function P(cos ®) may formally be
replaced by

P(cos @) = p(u', d'5 w b) (4)

since obviously the scattering angle can be expressed in terms of the coordinate system;
p(n', ¢'; 1, ) then refers to radiation originally in the direction (v, ¢#) which has been scattered
into the direction (x', ¢'). If @, = 1 we have conservative scattering (no absorption), and

p(p’, ¢'; u,¢)is normalized to unity.

The relation between cos ® and 1, ¢, u’, and ¢' can be easily obtained from Figure 1. Let us
suppose that radiation is incident on a mass element dm at O in the direction Oﬁl, and is scattered
at 0 through an angle ® into the direction OF,. From the spherical triangle ZP, P, we obtain the
following relation:

cos® = cosfcosf' + sinbsinb' cos (' ) = pup' + (1—/.1.2)1/2 (1*#'2)1/2 cos (¢’ —¢) (5)

where 1 = cos 9 and ' = cos 8’. The angles ¢ and 6' are respectively the zenith angles of incidence

and scattering, and ¢ and ¢’ are the corresponding azimuthal angles. It should further be noted
from Equation 5 that p(x’, ¢'; 1, ¢) obeys Helmholtz's principle of reciprocity; i.e.,

p(u's @' g ®) T P, B o, BT (6)

The Net Flux

Equation 1 gives the rate at which energy confined to a unit solid angle and unit frequency in-

terval flows across a unit area which is normal to the direction of radiation. The "monochromatic'"

net flux »F, is the net rate at which energy per unit frequency interval flows across a unit surface
in all directions, and this is given by

7F, = lecosﬁdw, (7

where the integration is to be performed over all solid angles. It should be noted that Equation 7
gives, in effect, the difference between the upward and downward fluxes across a unit surface area;
therefore, deviations from a null net flux reflect deviations from conditions equivalent to those in-
side a perfectly insulated isothermal cavity.

In terms of the coordinate system previously specified the net flux becomes

27 +1
7F, = f J pI,(z, u, d)dude . (8)
0 -1
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It is clear from Equation 8 that F, is in general a function of z. An extended account of the explicit
integrations which will be required in the context of the specific problems encountered in this
paper is given in Appendix C.

BASIC CONCEPTS AND THE EQUATION OF RADIATIVE TRANSFER

Introduction

It will be easiest to consider the interaction of radiation with matter from the "Lagrangian"
point of view; i.e., the movement of individual particles (photons in our present context) will be
followed. However, the observable parameter of interest, namely the monochromatic specific in-
tensity 1, is a field of these photons, and we shall be interested in following variations of this
field as it interacts with matter in some specified way. For this purpose it will be more practical
to study local variations of I, without regard to the individual history of each photon. This is the
"Eulerian" point of view (Reference 4).

An abrupt transition from the Lagrangian to the Eulerian point of view is somewhat unappeal-
ing in that it seems rather artificial. In order to appease this feeling of discontinuity of logical
consequence we shall endeavor to smooth out the transition by retaining something of the Lagran-
gian point of view while introducing the Eulerian point of view, and in doing so give some kind of
picture illustrating the essential identity of these two concepts.

Classification of Photon-Particle Interactions

Consider the photons of frequency » interacting with dm to be classified by ''type'", each type
depending upon the result of interaction as well as upon the intrinsic characteristics of the photon
itself. Each class of photons is therefore a field of these photons which behaves exactly as every
member of the field individually. We will want to restrict our attention to one field at a time, which
in essence is the same as restricting our attention to one photon of this field at a time. Thus, the
field from the Lagrangian point of view (in a less strict sense of the phrase) will be followed.

Since each photon behaves (by definition) like every other photon in the field, it is clear that
not only must each photon be identical with every other photon of this class, but also the system of
particles which this class as a whole interacts with must be composed of exactly the same kind
(dimensions, refractive index, etc.) of individual particles in order that the separate interactions
be identical; and if more than one interaction per photon takes place, the order, number, and
character of these interactions must be the same for each photon. Since the last restriction
creates an insurmountable strain on the imagination, it is seen immediately that we must restrict
the volume dv of the mass element dm to dimensions considerably less than the mean free path of
an individual photon, so that only single interactions are possible in dn. The additional problem
of correctly specifying the orientation of each particle can be circumvented only by limiting our-
selves to homogeneous spherical particles.



We define four classes of photons, each photon in the frequency (energy) range (v, v +dv), and
each interacting with one (spherical) particle in the radius range (r;, r; * dr;) which is of homo-
geneous composition of complex refractive index n - ix. The four classes are distinguished by
four different types of interactions, and are defined as follows (cf. Figure 2)*:

1. That system of photons which is incident upon dm in a time dt and in the direction (., ¢)
contained in the solid angle dw, and is (singly) scattered into the solid angle dw' in the direction
(»', ¢') by interactions in dm with particles in the radius range (r,, r, +dr;). This scattering
process may either be considered as a scattering of a certain fraction of the number of incident
photons into dw’, or as a re-direction of a fraction dfE, (z, ', ¢')] of the incident energy 3E, (z, u ¢)

into dw'.

2. That system of photons which is incident upon dm in time dt and in the direction (x, ¢) con-
tained in the solid angle dw, and is absorbed by the particles under consideration in dm: This ab-
sorption process may be considered as an absorption of a certain fraction of incident photons or
as a diminution of the incident energy SE, (z, 1, ¢) by an amount d[SEV (z, u, ¢)] .

3. That system of photons which is incident on dm in time dt and in the direction (»‘, ¢') con-
tained in the solid angle dw’, and is (singly) scattered into the solid angle dw in the direction (u, ¢).
Again, this scattering process may be considered either as a scattering of certain fraction of in-
cident individual photons into dw, or as a re-direction of a fraction d[¢E,(z, u, #)] of the incident
energy ¢E, (z, u', ¢') into de

4. That system of photons which is (thermally) emitted from the particles under considera-
tion in dm into the solid angle dw and in the direction (n, ¢) in a time dt. This thermal emission
process may be considered either as an emission of many individual photons, each in the energy
range (hv, hv+dhv ), or as a source of energy d[SE, (z, u, #)] which is emitted into dw in the direc-
tion (», ¢). In principle we need not have considered only thermal emission; however, in planetary
atmospheres we would not expect other types of emission to play a very significant role.

The first two classes of photons are those which are lost from the radiation field in the direc-
tion (», ¢) by scattering and absorption respectively. The last two classes consist of photons which
are gained by the radiation field in the direction (u, ¢) respectively by scattering and emission.
These are obviously not the total losses and gains to the radiation field, however, since only inter-
actions with particles in the radius range (ri, r, +dri) have been considered. Later on an integra-
tion over all particle sizes will have to be made.

The four classes of photons have the following characteristics in common:
a. frequency range (v, v+dv).
b. interaction with one (spherical) particle in the radius range (r;, r, +dr ).

c. interaction with particles of homogeneous composition of complex refractive index (n - ix).

*Note that dw and do’ ;re elements of solid angle which are both subtended at dm.
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The classes are also characterized by the differences tabulated below:

3 Incident Solid Angle Emergent Solid Angle
i Class Characterigtic Direction Subtended at dm Direction Subtended at dm
1. Singly Scattered (L.oss) (1, @) dw ('s ') de’
2. Absorbed (Loss) (s ) dew None None
3. Singly Scattered (Gain) (r',o") de’ (1, &) dw
4. Thermally Emitted (Gain) None None (1 @) dew

The classes may be characterized in terms of energy as follows:

Re-direction of fraction d[$E, (z, u', ¢')] of incident energy 3E, (z, u, ¢) into dw'.
Absorption of fraction d[SEV (z, 1, d;)} of incident energy S8E, (z, 1, ¢) by dm.

Re-direction of fraction d [BEV (z, i, ¢)] of incident energy 8E, (z, »’, ¢') into dw.

N

. Emission of energy d[5E, (z, 1, ¢)] into dw.

Single Scattering

In order to describe the interaction of one photon with one particle quantitatively, an appeal
will have to be made to some single scattering theory. The Mie Theory (Reference 1) will suit our
purpose if we restrict ourselves to homogeneous spherical particles in a radiation field of plane
waves.* Conceptually the Mie theory describes the outgoing ''scattered' radiation in terms of a
spherical wave front which depends upon the wavelength of the incoming plane wave and the size
and complex index of refraction of the spherical particle. The radial component of the outgoing
spherical wave dies out as the square of the distance, while the tangential component dies out as
the first power of the distance. Thus, the outgoing spherical wave tends to take on more and more
the character of a plane wave as the radial distance from the scattering center is steadily in-
creased. Since it has been implicitly assumed that many of the incident plane wave ''photons' have
originated from scattering and emission processes in other mass elements, it is clear that the di-
mensions of the mass elements must be sufficiently large such that the outgoing spherical wave of
scattered radiation from a particle in element dm’, say, has traveled a sufficient distance to be-
come essentially a plane wave by the time it suffers another interaction with a particle in dm. In
a crude way this means that the mean free path of a photon from mass element to adjacent mass
element must be large compared to the wavelength of radiation, which is going to place an upper
limit on the size of the particles compared with their mean separation distance. We shall always
assume that physical conditions prevail such that the Mie theory gives a valid picture of single
scattering in clouds.

It will not be the purpose of this paper to describe the Mie theory. Van de Hulst (Reference
6) and Born and Wolf (Reference 5) give a good account of it, and Havard (Reference 1) gives rather

*Photons are now regarded as plane waves, with the realization that this rather abrupt transition of